Chapter 5 Seal Material

5.1 Rubber

1. Rubber Material Symbol

<Table 1> ASTM rubber classification that used by NAK.

NAK SEALING TECHNOLOGIES CORPORATION

Symbol	Abbreviati on	Name	ASTM Classification
В	SBR	Styrene butadiene rubber	AA
С	CR	Chloroprene rubber	BC, BE
Е	EPDM	Ethylene propylene rubber	BA, CA, DA
F	FVMQ	Fluorinated silicone rubber	FK
G	CSM	Chlorosulfonated polyethylene	CE
Н	HNBR	Hydrogenated NBR rubber	DH
Μ	AEM	Ethylene/Acrylic rubber	EE, EF, EG
Ν	NBR	Acrylonitrile butadiene rubber	BF, BG, BK, CH
Р	ACM	Polyacrylate rubber	DF, DH
R	NR	Natural rubber	AA
S	VMQ	Silicone rubber	FC, FE, GE
Т	PTFE	Polytetrafluoro ethylene	
U	PU	Urethane rubber	BG
V	FKM	Fluorocarbon rubber	НК
Х	XNBR	Carboxylated NBR	BF, BG, CH
Z		Other	

NAK COPYRIGHT RESERVED

2. Rubber types and general property

<Table 2>Rubber types and their properties

Ite	Temp. R	ange ()										
m Type	High Temp.	Low Temp.	Property									
		1	wide rang acid resis	istance to alcohol, amines, petroleum oils, and gasoline's over a ge of temperatures. Also good resistance to caustic salts. Fair tance. Poor in strong oxidizing agents, chlorinated pons, ketones, and esters.								
1	100	-55	Low ACN	Increase low temperature resistance and elastic property. Used in where low temperature property is more important than oil resistance property.								
NBR	100	-40	Mid ACN	The property is between low and high ACN content. Used in low aromatic content or in where a little swell is acceptable.								
	100	-25	High ACN	Increase oil resistance, heat resistance, tensile strength, Hardness, abrasion resistance is improved, also increase gas impermeability; usually used in where high oil resistance is required, such as oil well, fuel battery cap, fuel hose, and other place where aromatic fuel, oil and solvent.								
				made from NBR by hydrogenation, it has high temperature e, abrasion resistance and good physical properties.								
HNBR	125	-40	Sulfur Cure	Better heat resistance and oil resistance than NBR (if containing heavy metal salt, rubber color will be affected).								
	150	-40		The Peroxide cured HNBR suits more widely temperature range, better antioxidant and would not affect color.								
ACM	150	-10	Widely used in diaphragm, hose for automotive application. Good resistance to heat, ozone and oil. Generally attacked by water, alcohol, glycol and aromatic hydrocarbons. The molecular structure contains ethyl acrylate(EA), butyl acrylate(BA) and methoxy ethyl acrylate(MEA). More BA content get more low temperature resistance, more MEA content get more oil resistance.									
VMQ	225	-55	The most widely temperature ranges for application. Good weather and ozone resistance. But poor mechanical property and poor chemical resistance.									

NAK COPYRIGHT RESERVED

			Excellent cl	hemical resistance but ester and ketone. The cost is high.							
FKM		-25	Dipolymer	Copolymer of vinylidiene fluoride and hexafluoro propylene, 66% fluorine content _o							
	250 -20		Tripolyme r	<i>ripolyme</i> Copolymer of vinylidiene fluoride, hexafluoro propylene tetrafluro ethylene, 68% fluorine content, more fluid resistance than dipolymer.							
EPDM	150	-55		Stable in polar fluids(alcohol, ketone and glycol), and hydrochloric acid. Due to the low specific gravity, it can compound to high filler content.							
SBR	100	-40		Could mixed with NR and other synthetic rubber. Poor mechanical property and low cure speed, low elasticity, high heat build-up.							
PTFE	250	-50	Due to the l property.	Due to the low friction coefficient, it is used in oil seal lip. Poor elastic property.							
CR	100	-40	oils and f	Good in moderate acid, alkali and salt solutions. Resistant to commercial oils and fuels. Poor in chromic and nitric acids, aromatics and chlorinated hydrocarbons.							

3. Basic Requirements for Classification for ASTM D2000

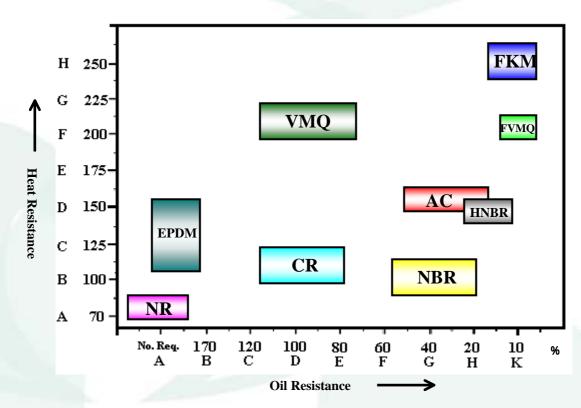
When selecting elastomer seals for specific applications, the American Society fot Testing and Materials (ASTM) is an important reference.

<Table.3>ASTM D2000 Rubber Test Condition

	ASTM D2000 Type	BF , BG BK , CH	BE , BC	DF, DH	FC, FE GE	FK	НК
	Rubber Material	NBR	CR	ACM	VMQ	FVMQ	FKM
Basic	Hardness(shore A)	70 ± 5	70 ± 5	70 ± 5	70 ± 5	60 ± 5	70 ± 5
Basic Property	Tensile Strength(psi)	2000	2000	1000	870	870	1450
	Elongation(%)	250	250	200	150	150	175
Heat Aging	Temp.()/Time(hr)	100 / 70	100 / 70	150 / 70	225 / 70	225 / 70	250 / 70
Test	Hs Change(max,%)	± 15	+15	+10	+10	+15	+10
	Tb Change(max,%)	± 30	-15	-25	-25	-45	-25

NAK COPYRIGHT RESERVED

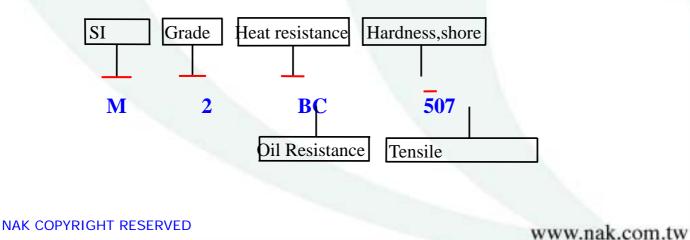
(~


PARTICULAR DE LA CALENCIA DE LA CALE

	Eb Change(max,%)	-50	-40	-30	-30	-45	-25
Compress	Temp.()/Time(hr)	100 / 22	100 / 22	150 / 22	175 / 22	175 / 22	175 / 22
ion Set	Compression Set (max,%)	25	35	40	30	45	30
	Temp.()/Time(hr)	100 / 70	100 / 70	150 / 70	150 / 70	23 / 70	23 / 70
	0il/Solvent	ASTM No.1 Oil	ASTM No.1 Oil	ASTM No.1 Oil	ASTM No.1 Oil	Fuel C	Fuel C
	Hs Change(max,%)	-5 to +10	± 10	-5 to +10	0 to -15	0 to -15	± 5
	Tb Change(max,%)	-25	-30	-20	-20	-60	-25
Lubricat	Eb Change(max,%)	-45	-30	-30	-20	-50	-20
ing oil / Fuel oil	Volume Change (max,%)	-10 to +5	-10 to +15	± 5	0 to +15	0 to +25	0 to +10
Resistan ce	Temp.()/Time(hr)	100 / 70	100 / 70	150 / 70	150 / 70	150 / 70	
Ce	0il/Solvent	IRM 903 Oil	IRM 903 Oil	IRM 903 Oil	IRM 903 Oil	IRM 903 Oil	
	Hs Change(max,%)	-10 to +5	-20	-15	-40	0 to -10	
	Tb Change(max,%)	-45	-45	-40	-	-35	-
	Eb Change(max,%)	-45	-30	-40	-	-30	
	Volume Change (max,%)	0 to +25	+80	+25	+60	0 to +10	
Low Temperat	Temp.()/Time(hr)	-40 / 3	-40 / 3	-10/3	-55 / 3	-55 / 3	-18/3
ure Brittlen ess Test	No brittle	PASS	PASS	PASS	PASS	PASS	PASS

NAK COPYRIGHT RESERVED

4. Material application temperature range


<Table 4>Rubber Material application temperature range_

5.ASTM D2000 Line Call-Outs

A "line call-out", which is a specification, shall contain: the documents names, the prefix letter M, The grade number, the material designation (type and class), and the hardness and tensile strength, follow by the appropriate suffix requirements. Following is an example of a "line call-out" or specification:

<Table 5>An example of a specification

6. Typical Properties of Selected Elastomer

<Table 6> The Typical Properties of Selected Elastomer

Rubber Material	NBR	CR	EPDM	ACM	VMQ	FVMQ	FKM
Tear Strength				-	-		-
Abrasion Resistance					-		
Compression Set	-	-	-		-		-
Resilience 23		-			-		
Fire resistance		-			-		
Weather resistance					1		
Water Resistance		- /			7 -		
Steam Resistance	-		-	×	-	-	
Ozone Resistance	-	Y	1				
Oxygen resistance			12				
Acid Resistance (Dilute)				-			
Acid Resistance (Concentrate)				-			
Base Resistance (Dilute)				-	1		
Base Resistance (Concentrate)				-			×
Synthetic Lubricant	-		×		×		
Low Polar Lubricant			×				
High Polar Lubricant			×				
Animal、Vegetable Oil			-			<u>.</u>	
Gas	-			_	×		

NAK COPYRIGHT RESERVED

impermeability							
Electricity							
resistance							
Metal Adhesion	-	-	-				
: Exceller	nt 🧹	: Good	: Fa	nir	: Poor	x : Ve	ery Poor

7. The Stability of Rubber in Chemicals, Oils, and Fluids

<Table 7>Rubber Chemical Resistance Guide

1	Fluid	HNBR	NBR	EPDM	CR	CSM	VMQ	FKM	ACM
	Steam(150)		×		×	×	×		×
Organic Acid	Acetic Acid				1				×
	hydrochloric acid (25%)				/				×
Inorganic Acid	Phosphoric Acid (20%)								
	Nitric Acid(25%)		×						×
Base	Sodium Hydroxide (30%)				×				_
	氨水(28%)						1		×
Salt Solution	NaCl (30%)								_
Salt Solution	Na ₂ CO ₃ (10%)								-
Ovidizing Agent	Hydrogen Peroxide (3%)								-
Oxidizing Agent	Sodium Chloride(5%)		×		×				×
Parafinc Fluid	Isooctane			×			×		
Aromatic Fluid	Benzene			×	×	×			×
Chlorinated Fluid	Trichloroethyl ene			×	×	×	×		
Alashal	Methanol								×
Alcohol	Ethanol								×
Ether	Ethyl Ether		and the second		×	×	×	×	×

NAK COPYRIGHT RESERVED

BALLINETS INTERPRISE LA

ſ	Ester	Ethyl Ester	×	×				×		_
	Ketone	Methyl Ethyl Ketone	×	×		×	×	×	×	×
	Aldehyde	Furfural				×	×	×	×	×
	Amine	Trihydroxyeth ylamine						×	×	×
I		Carbon Disulfide			×	×	×	—		_
		:Excellent	:Good	l	:Fai	ir	x:Poo	or		·

<Table 8> 0il and Fluid Resistance of Rubber

Rubber Oil,Chemical		HNBR	NBR	EPDM	SBR	PTFE	VMQ	FKM	ACM
On,Chennear	SAE #30			×	×				
Engina oil				~	~				
Engine oil	SAE 10W-#30			×	×				
	Vehicles used			×	×				
Gear oil	Industrial synthetic base								
Auto transmissio	on Fluid			×	×		×		
	DOT 3 (Glycol)	×				1		×	×
Brake Fluid	DOT 5 (Glycol)	×						×	×
	DOT 5 (silicone base)			×			×		
Turbine oil				×	×				
Mechanical lubrication oil)	oil(No.2			×	×		×		
Hydraulic oil(mi	ineral oil)			×	×				
Antiburn oil	Phosphoric ester	×	×	×	×				×

NAK COPYRIGHT RESERVED

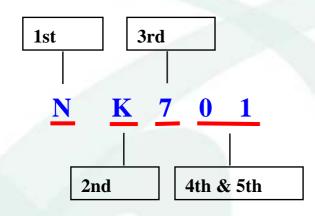
()

INAL OFFICE ADDRESS

	Water +								
	ethylene			×	×		A STATISTICS		×
	glycol								
Cutting oil		1		×	×				
	Mineral			×	×				
Grease	Silicone			×			×		
	Fluoro			×	×			×	
Cooling media	R12+paraffi nic			×	×		×	×	×
	R134a+glyc ol				×		×	×	×
Gasoline				×	×		×		×
Naphtha				×	×	371	×		×
Heavy oil				×	×		×		
Antifreeze fluid(ethylene glycol)		- /						×	×
Warm water	1								×
Salt water		1					×		×
Steam			×				×	×	×
Hydrochloric ac	id 10%								
Sulfuric acid 30							×		
Nitric acid 10%			×		×		×		×
Sodium hydroxi	de 40%						×	×	×
Benzene		×	×	×	×		×	×	×
Alcohol									×
Acetone		×	×	×	×			×	×

NAK COPYRIGHT RESERVED

BALLINETS DATES OF THE PARTY OF


8. Rubber Application Temperature Range for Several Oils

<table. 9="">Temper</table.>	ature Range	of Rubber	For \	Various Oi	I
------------------------------	-------------	-----------	-------	------------	---

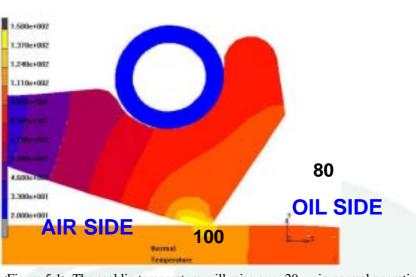
Oil	Continu ous Test Temper ature Renge	Cycle Test Temper ature Range	Engine Oil	Gear Oil	Transmi ssion Oil	General Hydraul ic Oil	Mineral Grease	Silicone Grease	Diesel Engine Oil	Gasoline /Engine Fuel (Standar d)	/Engine
Temperat	9		+150	+150	+160	+100	+100	+250			
ure Range			 -40	-40	-50	-30	-30	-50			
Material											
NBR	+100 -30	+120 -30	100	90	100	100	100	100	*	*	*
FKM	+200 -20	+250 -20	150	150	160	100	100	200	150	150	150
EPDM	+120 -50	+150 -50	NS	NS	NS	NS	NS	120	NS	NS	NS
VMQ	+200 -55	+225 -55	130	*	*	*	100	*	NS	NS	NS
HNBR	+130 -30	+150 -30	130	110	130	100	100	130	*	*	*
IIR	+120 -40	+140 -40	NS	NS	NS	NS	NS	120	NS	NS	NS
AU Polyester PU	+80 -30	+100 -30	100	100	100	100	100	100	60	60	60
Polyester elastomer	+100 -40	+120 -40	100	100	100	100	100	100	60	60	60
PA Nylon	+100 -30	+120 -30	100	100	100	100	100	100	100	100	100
РОМ	+100 -45	+120 -45	100	100	100	100	100	100	100	100	100
PTFE	+200 -50	+200 -50	150	150	160	100	100	200	150	150	150
ACM	+130 -10	+150 -10	130	110	120	100	100	130	*	*	*
NS: Not Suggested *: Not Suggested (Unit :)											

NAK COPYRIGHT RESERVED

9.NAK Material Code System

1st Digit Material

2nd Digit Color

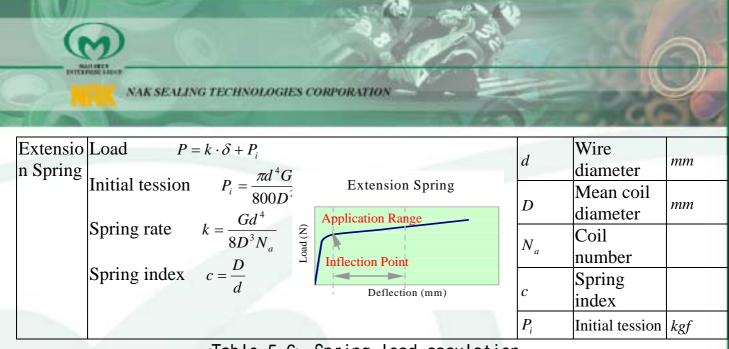

3rd Digit Hardness

4th & 5th Digit Property (Sequential Number)

1st	Digit	2nd	Digit	3rd Digit		
Ma	terial	Co	olor	Hardness		
Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	
В	SBR	W	White	A	95	
С	CR	K	Black		90	
Е	EPDM	В	Blue		85	
F	FVMQ	R	Red		80	
G	Hypalon	Т	Gray		75	
Н	HNBR	G	Green		70	
R	NR	Ν	Brown		65	
М	VAMAC	Р	Transparent	6	60	
Ν	NBR	А	Tangerine	E	55	
Р	ACM	U	Purple	-	50	
S	Silicone			F	45	
U	PU	1		0	coating	
V	FKM					
Х	XNBR					
Ι	IIR					

NAK COPYRIGHT RESERVED

Besides considering fluid media, shaft speed, and operation temperature, we have to consider the temperature rise on the seal lip. The seal lip temperature will rise over 20 in normal operation <Figure 5.1>. When selecting the seal material, the heat resistance factor must be considered.


<Figure 5.1> The seal lip temperature will raise over 20 in normal operation

5.2 Spring

It offers radial load for sealing lip, and it also can prolong the seal life. We have to consider shaft speed, shaft run-out and anticorrosive factors to select a proper garter spring. Table 5-6 shows the spring load calculation.

Compre ssion	Load $P = k \cdot \delta$		Symb ol	Legend	Unit
Spring	Spring rate $k = \frac{Gd^4}{2R^3 M}$	Compression Spring	Р	Load	kgf
	$8D^{3}N_{a}$	2 Application Range	k	Spring rate	kgf / mm
	Spring index $c = \frac{D}{d}$	Application Range	δ	Displaceme nt	mm
		Deflection (mm)	G	Modulus	kgf / mm

NAK COPYRIGHT RESERVED

<Table 5-6> Spring load caculation

Table 5-7 shows the spring material and its application.

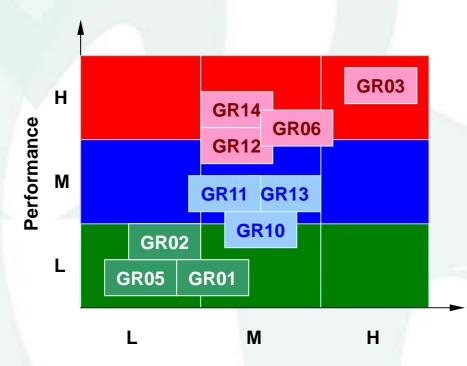
	Spring Material					
	Steel SAE 1070 SAE 1080	Stainless				
Fluid		SAE 30304	SAE30316			
Oil, grease						
Water						
Steam						
Salt water						
Acid						
Alkali						

<Table 5-7> Spring material and its application

NAK COPYRIGHT RESERVED

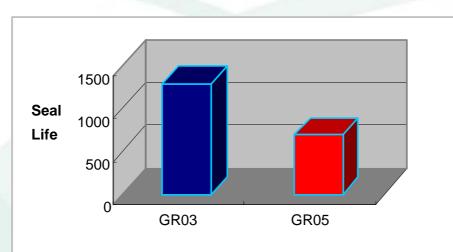
5.3 Case

Case can improve seal stiffness and sealing function. It also helps the seal to be installed correctly. Table 5-8 shows the case material and its application.


	Case Material				
	Steel SAE 1008	Stainless			
Fluid		SAE 30304	SAE30316		
Oil, grease					
Water					
Steam					
Salt water					
Acid					
Alkali					

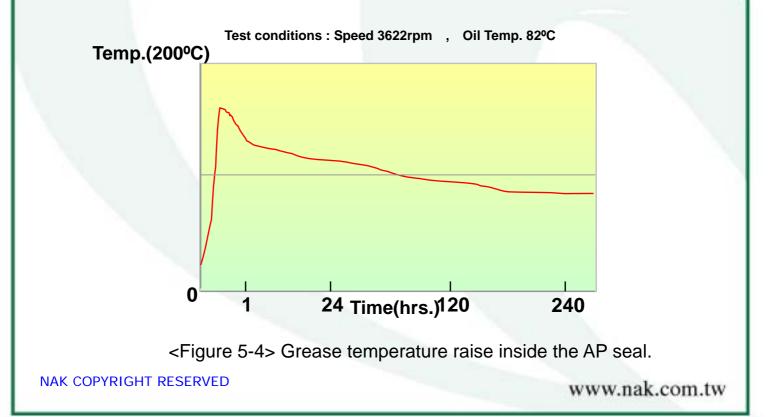
<Table 5-8> Case material and its application

NAK COPYRIGHT RESERVED


5.4 Grease

Grease has the high adhesive property, and it is used in the machinery that doesn't need to supply lubrication oil constantly. It is under semi-solid status that has good lubrication function, and it also have a good function for preventing dust or other contaminant. Figure 5-2 shows the performance for various greases

<Figure 5-2> Performance and price for various greases


NAK COPYRIGHT RESERVED

We can find that different greases have a great influence on seal life. <Figure 5-3>

<Figure 5-3> Different greases have a great influence on seal life.

The grease will carbonize under high temperature. The high speed motion will make the temperature rise greatly inside the seal. When selecting the seal material, the heat resistance factor must be considered. <Figure 5-4> shows the grease temperature raise inside the AP seal.

